Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation Algorithms for the Asymmetric Traveling Salesman Problem : Describing two recent methods (1405.1781v1)

Published 8 May 2014 in cs.DS

Abstract: The paper provides a description of the two recent approximation algorithms for the Asymmetric Traveling Salesman Problem, giving the intuitive description of the works of Feige-Singh[1] and Asadpour et.al\ [2].\newline [1] improves the previous $O(\log n)$ approximation algorithm, by improving the constant from 0.84 to 0.66 and modifying the work of Kaplan et. al\ [3] and also shows an efficient reduction from ATSPP to ATSP. Combining both the results, they finally establish an approximation ratio of $\left(\frac{4}{3}+\epsilon \right)\log n$ for ATSPP,\ considering a small $\epsilon>0$,\ improving the work of Chekuri and Pal.[4]\newline Asadpour et.al, in their seminal work\ [2], gives an $O\left(\frac{\log n}{\log \log n}\right)$ randomized algorithm for the ATSP, by symmetrizing and modifying the solution of the Held-Karp relaxation problem and then proving an exponential family distribution for probabilistically constructing a maximum entropy spanning tree from a spanning tree polytope and then finally defining the thin-ness property and transforming a thin spanning tree into an Eulerian walk.\ The optimization methods used in\ [2] are quite elegant and the approximation ratio could further be improved, by manipulating the thin-ness of the cuts.

Summary

We haven't generated a summary for this paper yet.