Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Representative Selection for Big Data via Sparse Graph and Geodesic Grassmann Manifold Distance (1405.1681v2)

Published 7 May 2014 in cs.CV

Abstract: This paper addresses the problem of identifying a very small subset of data points that belong to a significantly larger massive dataset (i.e., Big Data). The small number of selected data points must adequately represent and faithfully characterize the massive Big Data. Such identification process is known as representative selection [19]. We propose a novel representative selection framework by generating an l1 norm sparse graph for a given Big-Data dataset. The Big Data is partitioned recursively into clusters using a spectral clustering algorithm on the generated sparse graph. We consider each cluster as one point in a Grassmann manifold, and measure the geodesic distance among these points. The distances are further analyzed using a min-max algorithm [1] to extract an optimal subset of clusters. Finally, by considering a sparse subgraph of each selected cluster, we detect a representative using principal component centrality [11]. We refer to the proposed representative selection framework as a Sparse Graph and Grassmann Manifold (SGGM) based approach. To validate the proposed SGGM framework, we apply it onto the problem of video summarization where only few video frames, known as key frames, are selected among a much longer video sequence. A comparison of the results obtained by the proposed algorithm with the ground truth, which is agreed by multiple human judges, and with some state-of-the-art methods clearly indicates the viability of the SGGM framework.

Citations (2)

Summary

We haven't generated a summary for this paper yet.