Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

New tight approximations for Fisher's exact test (1405.1250v1)

Published 6 May 2014 in stat.CO and cs.NA

Abstract: Fisher's exact test is often a preferred method to estimate the significance of statistical dependence. However, in large data sets the test is usually too worksome to be applied, especially in an exhaustive search (data mining). The traditional solution is to approximate the significance with the $\chi2$-measure, but the accuracy is often unacceptable. As a solution, we introduce a family of upper bounds, which are fast to calculate and approximate Fisher's $p$-value accurately. In addition, the new approximations are not sensitive to the data size, distribution, or smallest expected counts like the $\chi2$-based approximation. According to both theoretical and experimental analysis, the new approximations produce accurate results for all sufficiently strong dependencies. The basic form of the approximation can fail with weak dependencies, but the general form of the upper bounds can be adjusted to be arbitrarily accurate.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.