Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
146 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Rank-SVM Approach to Anomaly Detection (1405.0530v1)

Published 2 May 2014 in stat.ML

Abstract: We propose a novel non-parametric adaptive anomaly detection algorithm for high dimensional data based on rank-SVM. Data points are first ranked based on scores derived from nearest neighbor graphs on n-point nominal data. We then train a rank-SVM using this ranked data. A test-point is declared as an anomaly at alpha-false alarm level if the predicted score is in the alpha-percentile. The resulting anomaly detector is shown to be asymptotically optimal and adaptive in that for any false alarm rate alpha, its decision region converges to the alpha-percentile level set of the unknown underlying density. In addition we illustrate through a number of synthetic and real-data experiments both the statistical performance and computational efficiency of our anomaly detector.

Citations (1)

Summary

We haven't generated a summary for this paper yet.