Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Representation of a Sentence using a Polar Fuzzy Neutrosophic Semantic Net (1405.0423v1)

Published 2 May 2014 in cs.AI

Abstract: A semantic net can be used to represent a sentence. A sentence in a language contains semantics which are polar in nature, that is, semantics which are positive, neutral and negative. Neutrosophy is a relatively new field of science which can be used to mathematically represent triads of concepts. These triads include truth, indeterminacy and falsehood, and so also positivity, neutrality and negativity. Thus a conventional semantic net has been extended in this paper using neutrosophy into a Polar Fuzzy Neutrosophic Semantic Net. A Polar Fuzzy Neutrosophic Semantic Net has been implemented in MATLAB and has been used to illustrate a polar sentence in English language. The paper demonstrates a method for the representation of polarity in a computers memory. Thus, polar concepts can be applied to imbibe a machine such as a robot, with emotions, making machine emotion representation possible.

Citations (1)

Summary

We haven't generated a summary for this paper yet.