Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
436 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Validating Sample Average Approximation Solutions with Negatively Dependent Batches (1404.7208v2)

Published 29 Apr 2014 in stat.OT

Abstract: Sample-average approximations (SAA) are a practical means of finding approximate solutions of stochastic programming problems involving an extremely large (or infinite) number of scenarios. SAA can also be used to find estimates of a lower bound on the optimal objective value of the true problem which, when coupled with an upper bound, provides confidence intervals for the true optimal objective value and valuable information about the quality of the approximate solutions. Specifically, the lower bound can be estimated by solving multiple SAA problems (each obtained using a particular sampling method) and averaging the obtained objective values. State-of-the-art methods for lower-bound estimation generate batches of scenarios for the SAA problems independently. In this paper, we describe sampling methods that produce negatively dependent batches, thus reducing the variance of the sample-averaged lower bound estimator and increasing its usefulness in defining a confidence interval for the optimal objective value. We provide conditions under which the new sampling methods can reduce the variance of the lower bound estimator, and present computational results to verify that our scheme can reduce the variance significantly, by comparison with the traditional Latin hypercube approach.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.