Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite generation of Lie algebras associated to associative algebras (1404.6942v1)

Published 28 Apr 2014 in math.RA

Abstract: Let $F$ be a field of characteristic not $2$ . An associative $F$-algebra $R$ gives rise to the commutator Lie algebra $R{(-)}=(R,[a,b]=ab-ba).$ If the algebra $R$ is equipped with an involution $:R\rightarrow R$ then the space of the skew-symmetric elements $K={a \in R \mid a{}=-a }$ is a Lie subalgebra of $R{(-)}.$ In this paper we find sufficient conditions for the Lie algebras $[R,R]$ and $[K,K]$ to be finitely generated.

Summary

We haven't generated a summary for this paper yet.