Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

On the geography and botany of knot Floer homology (1404.6913v3)

Published 28 Apr 2014 in math.GT

Abstract: This note explores two questions: (1) Which bigraded groups arise as the knot Floer homology of a knot in the three-sphere? (2) Given a knot, how many distinct knots share its Floer homology? Regarding the first, we show there exist bigraded groups satisfying all previously known constraints of knot Floer homology which do not arise as the invariant of a knot. This leads to a new constraint for knots admitting lens space surgeries, as well as a proof that the rank of knot Floer homology detects the trefoil knot. For the second, we show that any non-trivial band sum of two unknots gives rise to an infinite family of distinct knots with isomorphic knot Floer homology. We also prove that the fibered knot with identity monodromy is strongly detected by its knot Floer homology, implying that Floer homology solves the word problem for mapping class groups of surfaces with non-empty boundary. Finally, we survey some conjectures and questions and, based on the results described above, formulate some new ones.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube