Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic Deployment Gain: A Simple Approach to Characterize the SINR Distribution in General Cellular Networks (1404.6556v1)

Published 25 Apr 2014 in cs.IT, cs.NI, math.IT, and math.PR

Abstract: In cellular network models, the base stations are usually assumed to form a lattice or a Poisson point process (PPP). In reality, however, they are deployed neither fully regularly nor completely randomly. Accordingly, in this paper, we consider the very general class of motion-invariant models and analyze the behavior of the outage probability (the probability that the signal-to-interference-plus-noise-ratio (SINR) is smaller than a threshold) as the threshold goes to zero. We show that, remarkably, the slope of the outage probability (in dB) as a function of the threshold (also in dB) is the same for essentially all motion-invariant point processes. The slope merely depends on the fading statistics. Using this result, we introduce the notion of the asymptotic deployment gain (ADG), which characterizes the horizontal gap between the success probabilities of the PPP and another point process in the high-reliability regime (where the success probability is near 1). To demonstrate the usefulness of the ADG for the characterization of the SINR distribution, we investigate the outage probabilities and the ADGs for different point processes and fading statistics by simulations.

Citations (71)

Summary

We haven't generated a summary for this paper yet.