Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cutoff Phenomenon for Random Walks on Kneser Graphs (1404.4598v1)

Published 17 Apr 2014 in math.CO, cs.DM, and math.PR

Abstract: The cutoff phenomenon for an ergodic Markov chain describes a sharp transition in the convergence to its stationary distribution, over a negligible period of time, known as cutoff window. We study the cutoff phenomenon for simple random walks on Kneser graphs, which is a family of ergodic Markov chains. Given two integers $n$ and $k$, the Kneser graph $K(2n+k,n)$ is defined as the graph with vertex set being all subsets of ${1,\ldots,2n+k}$ of size $n$ and two vertices $A$ and $B$ being connected by an edge if $A\cap B =\emptyset$. We show that for any $k=O(n)$, the random walk on $K(2n+k,n)$ exhibits a cutoff at $\frac{1}{2}\log_{1+k/n}{(2n+k)}$ with a window of size $O(\frac{n}{k})$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.