Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Landau-Toeplitz theorems for slice regular functions over quaternions (1404.3120v1)

Published 11 Apr 2014 in math.CV

Abstract: The theory of slice regular functions of a quaternionic variable extends the notion of holomorphic function to the quaternionic setting. This theory, already rich of results, is sometimes surprisingly different from the theory of holomorphic functions of a complex variable. However, several fundamental results in the two environments are similar, even if their proofs for the case of quaternions need new technical tools. In this paper we prove the Landau-Toeplitz Theorem for slice regular functions, in a formulation that involves an appropriate notion of regular $2$-diameter. We then show that the Landau-Toeplitz inequalities hold in the case of the regular $n$-diameter, for all $n\geq 2$. Finally, a $3$-diameter version of the Landau-Toeplitz Theorem is proved using the notion of slice $3$-diameter.

Summary

We haven't generated a summary for this paper yet.