Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamics of rogue waves on a multi-soliton background in a vector nonlinear Schrodinger equation (1404.2988v1)

Published 11 Apr 2014 in nlin.SI

Abstract: General higher order rogue waves of a vector nonlinear Schrodinger equation (Manakov system) are derived using a Darboux-dressing transformation with an asymptotic expansion method. The Nth order semi-rational solutions containing 3N free parameters are expressed in separation of variables form. These solutions exhibit rogue waves on a multisoliton background. They demonstrate that the structure of rogue waves in this two-component system is richer than that in a one-component system. The study of our results would be of much importance in understanding and predicting rogue wave phenomena arising in nonlinear and complex systems, including optics, fluid dynamics, Bose-Einstein condensates and finance and so on.

Summary

We haven't generated a summary for this paper yet.