Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate controllability and lack of controllability to zero of the heat equation with memory (1404.2745v1)

Published 10 Apr 2014 in cs.SY and math.OC

Abstract: In this paper we consider the heat equation with memory in a bounded region $\Omega \subset\mathbb{R}d$, $d\geq 1$, in the case that the propagation speed of the signal is infinite (i.e. the Colemann-Gurtin model). The memory kernel is of class $C1$. We examine its controllability properties both under the action of boundary controls or when the controls are distributed in a subregion of $\Omega$. We prove approximate controllability of the system and, in contrast with this, we prove the existence of initial conditions which cannot be steered to hit the target $0$ in a certain time $T$, of course when the memory kernel is not identically zero. In both the cases we derive our results from well known properties of the heat equation.

Citations (25)

Summary

We haven't generated a summary for this paper yet.