Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Notes on Generalized Linear Models of Neurons (1404.1999v1)

Published 8 Apr 2014 in cs.NE, cs.LG, and q-bio.NC

Abstract: Experimental neuroscience increasingly requires tractable models for analyzing and predicting the behavior of neurons and networks. The generalized linear model (GLM) is an increasingly popular statistical framework for analyzing neural data that is flexible, exhibits rich dynamic behavior and is computationally tractable (Paninski, 2004; Pillow et al., 2008; Truccolo et al., 2005). What follows is a brief summary of the primary equations governing the application of GLM's to spike trains with a few sentences linking this work to the larger statistical literature. Latter sections include extensions of a basic GLM to model spatio-temporal receptive fields as well as network activity in an arbitrary numbers of neurons.

Citations (11)

Summary

We haven't generated a summary for this paper yet.