Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A geometric study of Wasserstein spaces: isometric rigidity in negative curvature (1404.1734v3)

Published 7 Apr 2014 in math.MG and math.DG

Abstract: Given a metric space X, one defines its Wasserstein space W2(X) as a set of sufficiently decaying probability measures on X endowed with a metric defined from optimal transportation. In this article, we continue the geometric study of W2(X) when X is a simply connected, nonpositively curved metric spaces by considering its isometry group. When X is Euclidean, the second named author proved that this isometry group is larger than the isometry group of X. In contrast, we prove here a rigidity result: when X is negatively curved, any isometry of W2(X) comes from an isometry of X.

Summary

We haven't generated a summary for this paper yet.