Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

On some covering problems in geometry (1404.1691v4)

Published 7 Apr 2014 in math.MG

Abstract: We present a method to obtain upper bounds on covering numbers. As applications of this method, we reprove and generalize results of Rogers on economically covering Euclidean $n$-space with translates of a convex body, or more generally, any measurable set. We obtain a bound for the density of covering the $n$-sphere by rotated copies of a spherically convex set (or, any measurable set). Using the same method, we sharpen an estimate by Artstein--Avidan and Slomka on covering a bounded set by translates of another. The main novelty of our method is that it is not probabilistic. The key idea, which makes our proofs rather simple and uniform through different settings, is an algorithmic result of Lov\'asz and Stein.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)