Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SSS* = Alpha-Beta + TT (1404.1517v1)

Published 5 Apr 2014 in cs.AI

Abstract: In 1979 Stockman introduced the SSS* minimax search algorithm that domi- nates Alpha-Beta in the number of leaf nodes expanded. Further investigation of the algorithm showed that it had three serious drawbacks, which prevented its use by practitioners: it is difficult to understand, it has large memory requirements, and it is slow. This paper presents an alternate formulation of SSS*, in which it is implemented as a series of Alpha-Beta calls that use a transposition table (AB- SSS*). The reformulation solves all three perceived drawbacks of SSS*, making it a practical algorithm. Further, because the search is now based on Alpha-Beta, the extensive research on minimax search enhancements can be easily integrated into AB-SSS*. To test AB-SSS* in practise, it has been implemented in three state-of-the- art programs: for checkers, Othello and chess. AB-SSS* is comparable in performance to Alpha-Beta on leaf node count in all three games, making it a viable alternative to Alpha-Beta in practise. Whereas SSS* has usually been regarded as being entirely different from Alpha-Beta, it turns out to be just an Alpha-Beta enhancement, like null-window searching. This runs counter to published simulation results. Our research leads to the surprising result that iterative deepening versions of Alpha-Beta can expand fewer leaf nodes than iterative deepening versions of SSS* due to dynamic move re-ordering.

Citations (7)

Summary

We haven't generated a summary for this paper yet.