Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive $h$-refinement for reduced-order models (1404.0442v3)

Published 2 Apr 2014 in cs.NA and math.NA

Abstract: This work presents a method to adaptively refine reduced-order models \emph{a posteriori} without requiring additional full-order-model solves. The technique is analogous to mesh-adaptive $h$-refinement: it enriches the reduced-basis space online by `splitting' a given basis vector into several vectors with disjoint support. The splitting scheme is defined by a tree structure constructed offline via recursive $k$-means clustering of the state variables using snapshot data. The method identifies the vectors to split online using a dual-weighted-residual approach that aims to reduce error in an output quantity of interest. The resulting method generates a hierarchy of subspaces online without requiring large-scale operations or full-order-model solves. Further, it enables the reduced-order model to satisfy \emph{any prescribed error tolerance} regardless of its original fidelity, as a completely refined reduced-order model is mathematically equivalent to the original full-order model. Experiments on a parameterized inviscid Burgers equation highlight the ability of the method to capture phenomena (e.g., moving shocks) not contained in the span of the original reduced basis.

Citations (133)

Summary

We haven't generated a summary for this paper yet.