Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Continuous Max-Flow Approach to General Hierarchical Multi-Labeling Problems (1404.0336v2)

Published 1 Apr 2014 in cs.CV

Abstract: Multi-region segmentation algorithms often have the onus of incorporating complex anatomical knowledge representing spatial or geometric relationships between objects, and general-purpose methods of addressing this knowledge in an optimization-based manner have thus been lacking. This paper presents Generalized Hierarchical Max-Flow (GHMF) segmentation, which captures simple anatomical part-whole relationships in the form of an unconstrained hierarchy. Regularization can then be applied to both parts and wholes independently, allowing for spatial grouping and clustering of labels in a globally optimal convex optimization framework. For the purposes of ready integration into a variety of segmentation tasks, the hierarchies can be presented in run-time, allowing for the segmentation problem to be readily specified and alternatives explored without undue programming effort or recompilation.

Citations (14)

Summary

We haven't generated a summary for this paper yet.