Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting relevant changes in time series models (1403.8120v1)

Published 31 Mar 2014 in stat.ME

Abstract: Most of the literature on change-point analysis by means of hypothesis testing considers hypotheses of the form H0 : \theta_1 = \theta_2 vs. H1 : \theta_1 != \theta_2, where \theta_1 and \theta_2 denote parameters of the process before and after a change point. This paper takes a different perspective and investigates the null hypotheses of no relevant changes, i.e. H0 : ||\theta_1 - \theta_2|| ? \leq \Delta?, where || \cdot || is an appropriate norm. This formulation of the testing problem is motivated by the fact that in many applications a modification of the statistical analysis might not be necessary, if the difference between the parameters before and after the change-point is small. A general approach to problems of this type is developed which is based on the CUSUM principle. For the asymptotic analysis weak convergence of the sequential empirical process has to be established under the alternative of non-stationarity, and it is shown that the resulting test statistic is asymptotically normal distributed. Several applications of the methodology are given including tests for relevant changes in the mean, variance, parameter in a linear regression model and distribution function among others. The finite sample properties of the new tests are investigated by means of a simulation study and illustrated by analyzing a data example from economics.

Summary

We haven't generated a summary for this paper yet.