Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 113 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

On subgradient projectors (1403.7135v1)

Published 27 Mar 2014 in math.OC, math.FA, and math.NA

Abstract: The subgradient projector is of considerable importance in convex optimization because it plays the key role in Polyak's seminal work - and the many papers it spawned - on subgradient projection algorithms for solving convex feasibility problems. In this paper, we offer a systematic study of the subgradient projector. Fundamental properties such as continuity, nonexpansiveness, and monotonicity are investigated. We also discuss the Yamagishi-Yamada operator. Numerous examples illustrate our results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.