Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Utility Maximization for Uplink MU-MIMO: Combining Spectral-Energy Efficiency and Fairness (1403.6977v5)

Published 27 Mar 2014 in cs.NI, cs.IT, and math.IT

Abstract: Driven by green communications, energy efficiency (EE) has become a new important criterion for designing wireless communication systems. However, high EE often leads to low spectral efficiency (SE), which spurs the research on EE-SE tradeoff. In this paper, we focus on how to maximize the utility in physical layer for an uplink multi-user multiple-input multipleoutput (MU-MIMO) system, where we will not only consider EE-SE tradeoff in a unified way, but also ensure user fairness. We first formulate the utility maximization problem, but it turns out to be non-convex. By exploiting the structure of this problem, we find a convexization procedure to convert the original nonconvex problem into an equivalent convex problem, which has the same global optimum with the original problem. Following the convexization procedure, we present a centralized algorithm to solve the utility maximization problem, but it requires the global information of all users. Thus we propose a primal-dual distributed algorithm which does not need global information and just consumes a small amount of overhead. Furthermore, we have proved that the distributed algorithm can converge to the global optimum. Finally, the numerical results show that our approach can both capture user diversity for EE-SE tradeoff and ensure user fairness, and they also validate the effectiveness of our primal-dual distributed algorithm.

Citations (2)

Summary

We haven't generated a summary for this paper yet.