Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

On construction of symmetries and recursion operators from zero-curvature representations and the Darboux-Egoroff system (1403.6109v2)

Published 24 Mar 2014 in nlin.SI, math-ph, math.DG, and math.MP

Abstract: The Darboux-Egoroff system of PDEs with any number $n\ge 3$ of independent variables plays an essential role in the problems of describing $n$-dimensional flat diagonal metrics of Egoroff type and Frobenius manifolds. We construct a recursion operator and its inverse for symmetries of the Darboux-Egoroff system and describe some symmetries generated by these operators. The constructed recursion operators are not pseudodifferential, but are Backlund autotransformations for the linearized system whose solutions correspond to symmetries of the Darboux-Egoroff system. For some other PDEs, recursion operators of similar types were considered previously by Papachristou, Guthrie, Marvan, Poboril, and Sergyeyev. In the structure of the obtained third and fifth order symmetries of the Darboux-Egoroff system, one finds the third and fifth order flows of an $(n-1)$-component vector modified KdV hierarchy. The constructed recursion operators generate also an infinite number of nonlocal symmetries. In particular, we obtain a simple construction of nonlocal symmetries that were studied by Buryak and Shadrin in the context of the infinitesimal version of the Givental-van de Leur twisted loop group action on the space of semisimple Frobenius manifolds. We obtain these results by means of rather general methods, using only the zero-curvature representation of the considered PDEs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.