Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hypercontractivity of quasi-free quantum semigroups (1403.5224v2)

Published 20 Mar 2014 in quant-ph, cond-mat.stat-mech, math-ph, and math.MP

Abstract: Hypercontractivity of a quantum dynamical semigroup has strong implications for its convergence behavior and entropy decay rate. A logarithmic Sobolev inequality and the corresponding logarithmic Sobolev constant can be inferred from the semigroup's hypercontractive norm bound. We consider completely-positive quantum mechanical semigroups described by a Lindblad master equation. To prove the norm bound, we follow an approach which has its roots in the study of classical rate equations. We use interpolation theorems for non-commutative $L_p$ spaces to obtain a general hypercontractive inequality from a particular $p \rightarrow q$-norm bound. Then, we derive a bound on the $2 \rightarrow 4$-norm from an analysis of the block diagonal structure of the semigroup's spectrum. We show that the dynamics of an $N$-qubit graph state Hamiltonian weakly coupled to a thermal environment is hypercontractive. As a consequence this allows for the efficient preparation of graph states in time ${\rm poly}(\log(N))$ by coupling at sufficiently low temperature. Furthermore, we extend our results to gapped Liouvillians arising from a weak linear coupling of a free-fermion systems.

Summary

We haven't generated a summary for this paper yet.