Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the continuous Fermat-Weber problem for a convex polygon using Euclidean distance (1403.3715v1)

Published 14 Mar 2014 in cs.CG and math.OC

Abstract: We consider the continuous Fermat-Weber problem, where the customers are continuously (uniformly) distributed along the boundary of a convex polygon. We derive the closed-form expression for finding the average distance from a given point to the continuously distributed customers along the boundary. A Weiszfeld-type procedure is proposed for this model, which is shown to be linearly convergent. We also derive a closed-form formula to find the average distance for a given point to the entire convex polygon, assuming a uniform distribution. Since the function is smooth, convex, and explicitly given, the continuous version of the Fermat-Weber problem over a convex polygon can be solved easily by numerical algorithms.

Citations (1)

Summary

We haven't generated a summary for this paper yet.