Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monoidal categories and the Gerstenhaber bracket in Hochschild cohomology (1403.3597v3)

Published 14 Mar 2014 in math.RA, math.CT, math.KT, and math.RT

Abstract: In this monograph, we extend S. Schwede's exact sequence interpretation of the Gerstenhaber bracket in Hochschild cohomology to certain exact and monoidal categories. Therefore we establish an explicit description of an isomorphism by A. Neeman and V. Retakh, which links $\mathrm{Ext}$-groups with fundamental groups of categories of extensions and relies on expressing the fundamental group of a (small) category by means of the associated Quillen groupoid. As a main result, we show that our construction behaves well with respect to structure preserving functors between exact monoidal categories. We use our main result to conclude, that both the Lie bracket and the squaring map in Hochschild cohomology are invariants under Morita equivalence. For quasi-triangular bialgebras, we further determine a significant part of the Lie bracket's kernel, and thereby prove a conjecture by L. Menichi. Along the way, we introduce $n$-extension closed and entirely extension closed subcategories of abelian categories, and study some of their properties.

Summary

We haven't generated a summary for this paper yet.