Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comparative Study of Audio Compression Based on Compressed Sensing and Sparse Fast Fourier Transform (SFFT): Performance and Challenges (1403.3061v1)

Published 12 Mar 2014 in cs.IT and math.IT

Abstract: Audio compression has become one of the basic multimedia technologies. Choosing an efficient compression scheme that is capable of preserving the signal quality while providing a high compression ratio is desirable in the different standards worldwide. In this paper we study the application of two highly acclaimed sparse signal processing algorithms, namely, Compressed Sensing (CS) and Sparse Fart Fourier transform, to audio compression. In addition, we present a Sparse Fast Fourier transform (SFFT)-based framework to compress audio signal. This scheme embeds the K-largest frequencies indices as part of the transmitted signal and thus saves in the bandwidth required for transmission

Citations (11)

Summary

We haven't generated a summary for this paper yet.