Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Becoming More Robust to Label Noise with Classifier Diversity (1403.1893v1)

Published 7 Mar 2014 in stat.ML, cs.AI, and cs.LG

Abstract: It is widely known in the machine learning community that class noise can be (and often is) detrimental to inducing a model of the data. Many current approaches use a single, often biased, measurement to determine if an instance is noisy. A biased measure may work well on certain data sets, but it can also be less effective on a broader set of data sets. In this paper, we present noise identification using classifier diversity (NICD) -- a method for deriving a less biased noise measurement and integrating it into the learning process. To lessen the bias of the noise measure, NICD selects a diverse set of classifiers (based on their predictions of novel instances) to determine which instances are noisy. We examine NICD as a technique for filtering, instance weighting, and selecting the base classifiers of a voting ensemble. We compare NICD with several other noise handling techniques that do not consider classifier diversity on a set of 54 data sets and 5 learning algorithms. NICD significantly increases the classification accuracy over the other considered approaches and is effective across a broad set of data sets and learning algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.