Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Credible Autocoding of Convex Optimization Algorithms (1403.1861v2)

Published 7 Mar 2014 in cs.SY

Abstract: The efficiency of modern optimization methods, coupled with increasing computational resources, has led to the possibility of real-time optimization algorithms acting in safety critical roles. There is a considerable body of mathematical proofs on on-line optimization programs which can be leveraged to assist in the development and verification of their implementation. In this paper, we demonstrate how theoretical proofs of real-time optimization algorithms can be used to describe functional properties at the level of the code, thereby making it accessible for the formal methods community. The running example used in this paper is a generic semi-definite programming (SDP) solver. Semi-definite programs can encode a wide variety of optimization problems and can be solved in polynomial time at a given accuracy. We describe a top-to-down approach that transforms a high-level analysis of the algorithm into useful code annotations. We formulate some general remarks about how such a task can be incorporated into a convex programming autocoder. We then take a first step towards the automatic verification of the optimization program by identifying key issues to be adressed in future work.

Citations (12)

Summary

We haven't generated a summary for this paper yet.