Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical exponential formulas for homogeneous diffusion (1403.1853v1)

Published 7 Mar 2014 in math.AP

Abstract: Let $\Delta{1}_{p}$ denote the $1$-homogeneous $p$-Laplacian, for $1 \leq p \leq \infty$. This paper proves that the unique bounded, continuous viscosity solution $u$ of the Cauchy problem [ \left{ \begin{array}{c} u_{t} \ - \ ( \frac{p}{ \, N + p - 2 \, } ) \, \Delta{1}_{p} u ~ = ~ 0 \quad \mbox{for} \quad x \in \mathbb{R}{N}, \quad t > 0 \ \ u(\cdot,0) ~ = ~ u_{0} \in BUC( \mathbb{R}{N} ) \end{array} \right. ] is given by the exponential formula [ u(t) ~ := ~ \lim_{n \to \infty}{ \left( M{t/n}_{p} \right){n} u_{0} } \, ] where the statistical operator $M{h}_{p} \colon BUC( \mathbb{R}{N} ) \to BUC( \mathbb{R}{N} )$ is defined by [ \left(M{h}_{p} \varphi \right)(x) := (1-q) \operatorname{median}{\partial B(x,\sqrt{2h})}{ \left{ \, \varphi \, \right} } + q \operatorname{mean}{\partial B(x,\sqrt{2h})}{ \left{ \, \varphi \, \right} } \, ] with $q := \frac{ N ( p - 1 ) }{ N + p - 2 }$, when $1 \leq p \leq 2$ and by [ \left(M{h}_{p} \varphi \right)(x) := ( 1 - q ) \operatorname{midrange}{\partial B(x,\sqrt{2h})}{ \left{ \, \varphi \, \right} } + q \operatorname{mean}{\partial B(x,\sqrt{2h})}{ \left{ \, \varphi \, \right} } \, ] with $q = \frac{ N }{ N + p - 2 }$, when $p \geq 2$. Possible extensions to problems with Dirichlet boundary conditions and to homogeneous diffusion on metric measure spaces are mentioned briefly.

Summary

We haven't generated a summary for this paper yet.