Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
17 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
458 tokens/sec
Kimi K2 via Groq Premium
222 tokens/sec
2000 character limit reached

Heat content asymptotics of some random Koch type snowflakes (1403.1811v1)

Published 7 Mar 2014 in math.PR

Abstract: We consider the short time asymptotics of the heat content $E$ of a domain $D$ of $\mathbb{R}d$. The novelty of this paper is that we consider the situation where $D$ is a domain whose boundary $\partial D$ is a random Koch type curve. When $\partial D$ is spatially homogeneous, we show that we can recover the lower and upper Minkowski dimensions of $\partial D$ from the short time behaviour of $E(s)$. Furthermore, in some situations where the Minkowski dimension exists, finer geometric fluctuations can be recovered and the heat content is controlled by $s\alpha e{f(\log(1/s))}$ for small $s$, for some $\alpha \in (0, \infty)$ and some regularly varying function $f$. The function $f$ is not constant is general and carries some geometric information. When $\partial D$ is statistically self-similar, then the Minkowski dimension and content of $\partial D$ typically exist and can be recovered from $E(s)$. Furthermore, the heat content has an almost sure expansion $E(s) = c s{\alpha} N_\infty + o(s\alpha)$ for small $s$, for some $c$ and $\alpha \in (0, \infty)$ and some positive random variable $N_\infty$ with unit expectation arising as the limit of some martingale.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.