Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust PCA with Partial Subspace Knowledge (1403.1591v4)

Published 6 Mar 2014 in cs.IT and math.IT

Abstract: In recent work, robust Principal Components Analysis (PCA) has been posed as a problem of recovering a low-rank matrix $\mathbf{L}$ and a sparse matrix $\mathbf{S}$ from their sum, $\mathbf{M}:= \mathbf{L} + \mathbf{S}$ and a provably exact convex optimization solution called PCP has been proposed. This work studies the following problem. Suppose that we have partial knowledge about the column space of the low rank matrix $\mathbf{L}$. Can we use this information to improve the PCP solution, i.e. allow recovery under weaker assumptions? We propose here a simple but useful modification of the PCP idea, called modified-PCP, that allows us to use this knowledge. We derive its correctness result which shows that, when the available subspace knowledge is accurate, modified-PCP indeed requires significantly weaker incoherence assumptions than PCP. Extensive simulations are also used to illustrate this. Comparisons with PCP and other existing work are shown for a stylized real application as well. Finally, we explain how this problem naturally occurs in many applications involving time series data, i.e. in what is called the online or recursive robust PCA problem. A corollary for this case is also given.

Citations (4)

Summary

We haven't generated a summary for this paper yet.