Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Introduction to Iterated Monodromy Groups (1403.0899v1)

Published 4 Mar 2014 in math.DS

Abstract: The theory of iterated monodromy groups was developed by Nekrashevych. It is a wonderful example of application of group theory in dynamical systems and, in particular, in holomorphic dynamics. Iterated monodromy groups encode in a computationally efficient way combinatorial information about any dynamical system induced by a post-critically finite branched covering. Their power was illustrated by a solution of the Hubbard Twisted Rabbit Problem given by Bartholdi and Nekrashevych. These notes attempt to introduce this theory for those who are familiar with holomorphic dynamics but not with group theory. The aims are to give all explanations needed to understand the main definition and to provide skills in computing any iterated monodromy group efficiently. Moreover some explicit links between iterated monodromy groups and holomorphic dynamics are detailed. In particular, combinatorial equivalence classes and matings of polynomials are discussed.

Summary

We haven't generated a summary for this paper yet.