Papers
Topics
Authors
Recent
Search
2000 character limit reached

Introduction to Iterated Monodromy Groups

Published 4 Mar 2014 in math.DS | (1403.0899v1)

Abstract: The theory of iterated monodromy groups was developed by Nekrashevych. It is a wonderful example of application of group theory in dynamical systems and, in particular, in holomorphic dynamics. Iterated monodromy groups encode in a computationally efficient way combinatorial information about any dynamical system induced by a post-critically finite branched covering. Their power was illustrated by a solution of the Hubbard Twisted Rabbit Problem given by Bartholdi and Nekrashevych. These notes attempt to introduce this theory for those who are familiar with holomorphic dynamics but not with group theory. The aims are to give all explanations needed to understand the main definition and to provide skills in computing any iterated monodromy group efficiently. Moreover some explicit links between iterated monodromy groups and holomorphic dynamics are detailed. In particular, combinatorial equivalence classes and matings of polynomials are discussed.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.