Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Arc-transitive cubic abelian bi-Cayley graphs and BCI-graphs (1403.0785v1)

Published 4 Mar 2014 in math.CO

Abstract: A finite simple graph is called a bi-Cayley graph over a group $H$ if it has a semiregular automorphism group, isomorphic to $H,$ which has two orbits on the vertex set. Cubic vertex-transitive bi-Cayley graphs over abelian groups have been classified recently by Feng and Zhou (Europ. J. Combin. 36 (2014), 679--693). In this paper we consider the latter class of graphs and select those in the class which are also arc-transitive. Furthermore, such a graph is called $0$-type when it is bipartite, and the bipartition classes are equal to the two orbits of the respective semiregular automorphism group. A $0$-type graph can be represented as the graph $\mathrm{BCay}(H,S),$ where $S$ is a subset of $H,$ the vertex set of which consists of two copies of $H,$ say $H_0$ and $H_1,$ and the edge set is ${{h_0,g_1} : h,g \in H, g h{-1} \in S}$. A bi-Cayley graph $\mathrm{BCay}(H,S)$ is called a BCI-graph if for any bi-Cayley graph $\mathrm{BCay}(H,T),$ $\mathrm{BCay}(H,S) \cong \mathrm{BCay}(H,T)$ implies that $T = h S\alpha$ for some $h \in H$ and $\alpha \in \mathrm{Aut}(H)$. It is also shown that every cubic connected arc-transitive $0$-type bi-Cayley graph over an abelian group is a BCI-graph.

Summary

We haven't generated a summary for this paper yet.