Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering Concept Chains from Ordered Data without Path Descriptions (1403.0764v1)

Published 4 Mar 2014 in cs.AI

Abstract: This paper describes a process for clustering concepts into chains from data presented randomly to an evaluating system. There are a number of rules or guidelines that help the system to determine more accurately what concepts belong to a particular chain and what ones do not, but it should be possible to write these in a generic way. This mechanism also uses a flat structure without any hierarchical path information, where the link between two concepts is made at the level of the concept itself. It does not require related metadata, but instead, a simple counting mechanism is used. Key to this is a count for both the concept itself and also the group or chain that it belongs to. To test the possible success of the mechanism, concept chain parts taken randomly from a larger ontology were presented to the system, but only at a depth of 2 concepts each time. That is - root concept plus a concept that it is linked to. The results show that this can still lead to very variable structures being formed and can also accommodate some level of randomness.

Citations (2)

Summary

We haven't generated a summary for this paper yet.