Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A search for quantum coin-flipping protocols using optimization techniques (1403.0505v1)

Published 3 Mar 2014 in math.OC, cs.CR, and quant-ph

Abstract: Coin-flipping is a cryptographic task in which two physically separated, mistrustful parties wish to generate a fair coin-flip by communicating with each other. Chailloux and Kerenidis (2009) designed quantum protocols that guarantee coin-flips with near optimal bias. The probability of any outcome in these protocols is provably at most $1/\sqrt{2} + \delta$ for any given $\delta > 0$. However, no explicit description of these protocols is known, and the number of rounds in the protocols tends to infinity as $\delta$ goes to 0. In fact, the smallest bias achieved by known explicit protocols is $1/4$ (Ambainis, 2001). We take a computational optimization approach, based mostly on convex optimization, to the search for simple and explicit quantum strong coin-flipping protocols. We present a search algorithm to identify protocols with low bias within a natural class, protocols based on bit-commitment (Nayak and Shor, 2003) restricting to commitment states used by Mochon (2005). An analysis of the resulting protocols via semidefinite programs (SDPs) unveils a simple structure. For example, we show that the SDPs reduce to second-order cone programs. We devise novel cheating strategies in the protocol by restricting the semidefinite programs and use the strategies to prune the search. The techniques we develop enable a computational search for protocols given by a mesh over the parameter space. The protocols have up to six rounds of communication, with messages of varying dimension and include the best known explicit protocol (with bias 1/4). We conduct two kinds of search: one for protocols with bias below 0.2499, and one for protocols in the neighbourhood of protocols with bias 1/4. Neither of these searches yields better bias. Based on the mathematical ideas behind the search algorithm, we prove a lower bound on the bias of a class of four-round protocols.

Citations (17)

Summary

We haven't generated a summary for this paper yet.