Electromagnetic force and torque in ponderable media (1402.7262v1)
Abstract: Maxwell's macroscopic equations combined with a generalized form of the Lorentz law of force are a complete and consistent set of equations. Not only are these five equations fully compatible with special relativity, they also conform with conservation laws of energy, momentum, and angular momentum. We demonstrate consistency with the conservation laws by showing that, when a beam of light enters a magnetic dielectric, a fraction of the incident linear (or angular) momentum pours into the medium at a rate determined by the Abraham momentum density, ExH/c2, and the group velocity V_g of the electromagnetic field. The balance of the incident, reflected, and transmitted momenta is subsequently transferred to the medium as force (or torque) at the leading edge of the beam, which propagates through the medium with velocity V_g. Our analysis does not require "hidden" momenta to comply with the conservation laws, nor does it dissolve into ambiguities with regard to the nature of electromagnetic momentum in ponderable media. The linear and angular momenta of the electromagnetic field are clearly associated with the Abraham momentum, and the phase and group refractive indices (n_p and n_g) play distinct yet definitive roles in the expressions of force, torque, and momentum densities.