Gaussian fluctuations of Young diagrams and structure constants of Jack characters
Abstract: In this paper, we consider a deformation of Plancherel measure linked to Jack polynomials. Our main result is the description of the first and second-order asymptotics of the bulk of a random Young diagram under this distribution, which extends celebrated results of Vershik-Kerov and Logan-Shepp (for the first order asymptotics) and Kerov (for the second order asymptotics). This gives more evidence of the connection with Gaussian $\beta$-ensemble, already suggested by some work of Matsumoto. Our main tool is a polynomiality result for the structure constant of some quantities that we call Jack characters, recently introduced by Lassalle. We believe that this result is also interested in itself and we give several other applications of it.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.