Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating gradients with continuous piecewise polynomial functions (1402.3945v1)

Published 17 Feb 2014 in math.NA

Abstract: Motivated by conforming finite element methods for elliptic problems of second order, we analyze the approximation of the gradient of a target function by continuous piecewise polynomial functions over a simplicial mesh. The main result is that the global best approximation error is equivalent to an appropriate sum in terms of the local best approximations errors on elements. Thus, requiring continuity does not downgrade local approximability and discontinuous piecewise polynomials essentially do not offer additional approximation power, even for a fixed mesh. This result implies error bounds in terms of piecewise regularity over the whole admissible smoothness range. Moreover, it allows for simple local error functionals in adaptive tree approximation of gradients.

Summary

We haven't generated a summary for this paper yet.