Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Circular law for random matrices with exchangeable entries (1402.3660v1)

Published 15 Feb 2014 in math.PR

Abstract: An exchangeable random matrix is a random matrix with distribution invariant under any permutation of the entries. For such random matrices, we show, as the dimension tends to infinity, that the empirical spectral distribution tends to the uniform law on the unit disc. This is an instance of the universality phenomenon known as the circular law, for a model of random matrices with dependent entries, rows, and columns. It is also a non-Hermitian counterpart of a result of Chatterjee on the semi-circular law for random Hermitian matrices with exchangeable entries. The proof relies in particular on a reduction to a simpler model given by a random shuffle of a rigid deterministic matrix, on Hermitization, and also on combinatorial concentration of measure and combinatorial Central Limit Theorem. A crucial step is a polynomial bound on the smallest singular value of exchangeable random matrices, which may be of independent interest.

Summary

We haven't generated a summary for this paper yet.