Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong converse for the quantum capacity of the erasure channel for almost all codes (1402.3626v1)

Published 14 Feb 2014 in quant-ph, cs.IT, and math.IT

Abstract: A strong converse theorem for channel capacity establishes that the error probability in any communication scheme for a given channel necessarily tends to one if the rate of communication exceeds the channel's capacity. Establishing such a theorem for the quantum capacity of degradable channels has been an elusive task, with the strongest progress so far being a so-called "pretty strong converse". In this work, Morgan and Winter proved that the quantum error of any quantum communication scheme for a given degradable channel converges to a value larger than $1/\sqrt{2}$ in the limit of many channel uses if the quantum rate of communication exceeds the channel's quantum capacity. The present paper establishes a theorem that is a counterpart to this "pretty strong converse". We prove that the large fraction of codes having a rate exceeding the erasure channel's quantum capacity have a quantum error tending to one in the limit of many channel uses. Thus, our work adds to the body of evidence that a fully strong converse theorem should hold for the quantum capacity of the erasure channel. As a side result, we prove that the classical capacity of the quantum erasure channel obeys the strong converse property.

Citations (9)

Summary

We haven't generated a summary for this paper yet.