Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple singular values of Hankel operators (1402.1716v1)

Published 7 Feb 2014 in math.AP and math.SP

Abstract: The goal of this paper is to construct a nonlinear Fourier transformation on the space of symbols of compact Hankel operators on the circle. This transformation allows to solve a general inverse spectral problem involving singular values of a compact Hankel operator, with arbitrary multiplicities. The formulation of this result requires the introduction of the pair made with a Hankel operator and its shifted Hankel operator. As an application, we prove that the space of symbols of compact Hankel operators on the circle admits a singular foliation made of tori of finite or infinite dimensions, on which the flow of the cubic Szeg\"o equation acts. In particular, we infer that arbitrary solutions of the cubic Szeg\"o equation on the circle with finite momentum are almost periodic with values in H{1/2}(S 1).

Summary

We haven't generated a summary for this paper yet.