Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equilibrium Points of an AND-OR Tree: under Constraints on Probability (1401.8175v3)

Published 31 Jan 2014 in cs.AI

Abstract: We study a probability distribution d on the truth assignments to a uniform binary AND-OR tree. Liu and Tanaka [2007, Inform. Process. Lett.] showed the following: If d achieves the equilibrium among independent distributions (ID) then d is an independent identical distribution (IID). We show a stronger form of the above result. Given a real number r such that 0 < r < 1, we consider a constraint that the probability of the root node having the value 0 is r. Our main result is the following: When we restrict ourselves to IDs satisfying this constraint, the above result of Liu and Tanaka still holds. The proof employs clever tricks of induction. In particular, we show two fundamental relationships between expected cost and probability in an IID on an OR-AND tree: (1) The ratio of the cost to the probability (of the root having the value 0) is a decreasing function of the probability x of the leaf. (2) The ratio of derivative of the cost to the derivative of the probability is a decreasing function of x, too.

Citations (17)

Summary

We haven't generated a summary for this paper yet.