Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

The first fundamental theorem of invariant theory for the orthosymplectic supergroup (1401.7395v2)

Published 29 Jan 2014 in math.RT

Abstract: We give an elementary proof of the first fundamental theorem of the invariant theory for the orthosymplectic supergroup by generalising the method of Atiyah, Bott and Patodi to the supergroup context. We use methods from super-algebraic geometry to convert invariants of the orthosymplectic supergroup into invariants of the corresponding general linear supergroup on a different space. In this way, a super Schur-Weyl-Brauer duality is established between the orthosymplectic supergroup of superdimension $(m|2n)$ and the Brauer algebra with parameter $m-2n$. The result may be interpreted in terms of the relevant Harish-Chandra super pair action (over the complex field), or equivalently, the orthosymplectic Lie supergroup over the infinite dimensional Grassmann algebra. We also state a corresponding theorem for the orthosymplectic Lie superalgebra, which involves an extra invariant generator, the super-Pfaffian.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.