Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

$L^2$-error estimates for finite element approximations of boundary fluxes (1401.6994v1)

Published 27 Jan 2014 in math.NA

Abstract: We prove quasi-optimal a priori error estimates for finite element approximations of boundary normal fluxes in the $L2$-norm. Our results are valid for a variety of different schemes for weakly enforcing Dirichlet boundary conditions including Nitsche's method, and Lagrange multiplier methods. The proof is based on an error representation formula that is derived by using a discrete dual problem with $L2$-Dirichlet boundary data and combines a weighted discrete stability estimate for the dual problem with anisotropic interpolation estimates in the boundary zone.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.