Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 478 tok/s Pro
Kimi K2 223 tok/s Pro
2000 character limit reached

The decategorification of bordered Khovanov homology (1401.5499v1)

Published 21 Jan 2014 in math.GT

Abstract: In two previous papers, the author showed how to decompose the Khovanov homology of a link $\mathcal{L}$ into the algebraic pairing of a type D structure and a type A structure (as defined in bordered Floer homology), whenever a diagram for $\mathcal{L}$ is decomposed into the union of two tangles. Since Khovanov homology is the categorification of a version of the Jones polynomial, it is natural to ask what the type A and type D structures categorify, and how their pairing is encoded in the decategorifications. In this paper, the author constructs the decategorifications of these two structures, in a manner similar to Ina Petkova's decategorification of bordered Floer homology and shows how they recover the Jones polynomial. We also give a new proof of the mutation invariance of the Jones polynomial which uses these decomposition techniques.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)