Finding minimum Tucker submatrices (1401.4739v1)
Abstract: A binary matrix has the Consecutive Ones Property (C1P) if its columns can be ordered in such a way that all 1s on each row are consecutive. These matrices are used for DNA physical mapping and ancestral genome reconstruction in computational biology on the other hand they represents a class of convex bipartite graphs and are of interest of algorithm graph theory researchers. Tucker gave a forbidden submartices characterization of matrices that have C1P property in 1972. Booth and Lucker (1976) gave a first linear time recognition algorithm for matrices with C1P property and then in 2002, Habib, et al. gave a simpler linear time recognition algorithm. There has been substantial amount of works on efficiently finding minimum size forbidden submatrix. Our algorithm is at least $n$ times faster than the existing algorithm where $n$ is the number of columns of the input matrix.