Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing Equivalence of Polynomials under Shifts (1401.3714v2)

Published 15 Jan 2014 in cs.CC

Abstract: Two polynomials $f, g \in \mathbb{F}[x_1, \ldots, x_n]$ are called shift-equivalent if there exists a vector $(a_1, \ldots, a_n) \in \mathbb{F}n$ such that the polynomial identity $f(x_1+a_1, \ldots, x_n+a_n) \equiv g(x_1,\ldots,x_n)$ holds. Our main result is a new randomized algorithm that tests whether two given polynomials are shift equivalent. Our algorithm runs in time polynomial in the circuit size of the polynomials, to which it is given black box access. This complements a previous work of Grigoriev (Theoretical Computer Science, 1997) who gave a deterministic algorithm running in time $n{O(d)}$ for degree $d$ polynomials. Our algorithm uses randomness only to solve instances of the Polynomial Identity Testing (PIT) problem. Hence, if one could de-randomize PIT (a long-standing open problem in complexity) a de-randomization of our algorithm would follow. This establishes an equivalence between de-randomizing shift-equivalence testing and de-randomizing PIT (both in the black-box and the white-box setting). For certain restricted models, such as Read Once Branching Programs, we already obtain a deterministic algorithm using existing PIT results.

Citations (21)

Summary

We haven't generated a summary for this paper yet.