Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Latent Tree Models and Approximate Inference in Bayesian Networks (1401.3429v1)

Published 15 Jan 2014 in cs.LG

Abstract: We propose a novel method for approximate inference in Bayesian networks (BNs). The idea is to sample data from a BN, learn a latent tree model (LTM) from the data offline, and when online, make inference with the LTM instead of the original BN. Because LTMs are tree-structured, inference takes linear time. In the meantime, they can represent complex relationship among leaf nodes and hence the approximation accuracy is often good. Empirical evidence shows that our method can achieve good approximation accuracy at low online computational cost.

Citations (55)

Summary

We haven't generated a summary for this paper yet.