Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Investigating Cellular Automata Based Network Intrusion Detection System For Fixed Networks (NIDWCA) (1401.3046v1)

Published 14 Jan 2014 in cs.NI

Abstract: Network Intrusion Detection Systems (NIDS) are computer systems which monitor a network with the aim of discerning malicious from benign activity on that network. With the recent growth of the Internet such security limitations are becoming more and more pressing. Most of the current network intrusion detection systems relay on labeled training data. An Unsupervised CA based anomaly detection technique that was trained with unlabelled data is capable of detecting previously unseen attacks. This new approach, based on the Cellular Automata classifier (CAC) with Genetic Algorithms (GA), is used to classify program behavior as normal or intrusive. Parameters and evolution process for CAC with GA are discussed in detail. This implementation considers both temporal and spatial information of network connections in encoding the network connection information into rules in NIDS. Preliminary experiments with KDD Cup data set show that the CAC classifier with Genetic Algorithms can effectively detect intrusive attacks and achieve a low false positive rate. Training a NIDWCA (Network Intrusion Detection with Cellular Automata) classifier takes significantly shorter time than any other conventional techniques.

Citations (2)

Summary

We haven't generated a summary for this paper yet.